Extracting knowledge from text using SHELDON, a Semantic Holistic framEwork for LinkeD ONtology data
نویسندگان
چکیده
SHELDON is the first true hybridization of NLP machine reading and the Semantic Web. It extracts RDF data from text using a machine reader: the extracted RDF graphs are compliant to Semantic Web and Linked Data. It goes further and applies Semantic Web practices and technologies to extend the current human-readable web. The input is represented by a sentence in any language. SHELDON includes different capabilities in order to extend machine reading to Semantic Web data: frame detection, topic extraction, named entity recognition, resolution and coreference, terminology extraction, sense tagging and disambiguation, taxonomy induction, semantic role labeling, type induction, sentiment analysis, citation inference, relation and event extraction, nice visualization tools which make use of the JavaScript infoVis Toolkit and RelFinder. A demo of SHELDON can be seen and used at http://wit.istc.cnr. it/stlab-tools/sheldon.
منابع مشابه
SHELDON: Semantic Holistic FramEwork for LinkeD ONtology Data
SHELDON is the first true hybridization of NLP machine reading and Semantic Web. It is a framework that builds upon a machine reader for extracting RDF graphs from text so that the output is compliant to Semantic Web and Linked Data patterns. It extends the current human-readable web by using Semantic Web practices and technologies in a machine-processable form. Given a sentence in any language...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملQuery Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملA Domain Independent Framework for Extracting Linked Semantic Data from Tables
Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from tables requires human input to create schem...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کامل